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Formulation of SEA parameters using mobility
functions

By JEromeE E. MANNING

Cambridge Collaborative, Inc., 689 Concord Avenue, Cambridge,
Massachusetts 02138, U.S.A.

Statistical energy analysis sEa formulates the dynamic response of a system in terms
of power and energy variables. The sea parameters include power inputs; damping
loss factors; which control the power dissipated within the system; and coupling loss
factors, which control the power transmitted between coupled subsystems. One of
the great difficulties in using sEA is the calculation of these parameters. In this paper
SEA parameters are formulated using general mobility functions. Simplifications that
result from averaging the parameters either over frequency or over an ensemble of
dynamic systems are presented. These simplifications make it possible to apply sEa
to very complex structural-acoustic systems.
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1. Introduction

Statistical energy analysis, or SEA as it is commonly called, provides a technique to
study the dynamic response of complex structural-acoustic systems. Since its
introduction almost 30 years ago, SEA has slowly grown in popularity. Today it is
considered by many to be the best analysis technique for high frequencies (Rockwood
1987). In addition, research is being conducted at Cambridge Collaborative and other
organizations to extend the validity of the technique to lower frequencies (Manning
1990). The rise in popularity of sga is due to the fact that it can be used both as a
theoretical technique and an experimental technique. The theoretician computes the
SEA parameters using theoretical mode and wave analysis, while the experimentalist
computes these parameters using various measured data. While both techniques
have merit, this paper focuses more on the theoretical side of sEa than the
experimental. It is hoped that those trying to compute sga parameters from basic
theory will benefit from the approaches outlined in the paper and that those trying
to measure SEA parameters will be able to design better and more accurate
measurement techniques given a better understanding of the theory.

In several past papers an effort has been made to verify the validity of sea
concepts (Hodges 1986; Langley 1990). These are important studies. However, in
this paper I emphasize more the engineering development of sEa models using
theoretically computed seA parameters based on mobility and impedance functions.

The paper is divided into two major sections. The first section deals with the
general process of calculating the sEa parameters using mobility functions. In this
section, I assume that the power input to a system or the power transmitted between
systems can be represented by the product of single force and velocity amplitudes.
This would be the case for a point excitation in a single direction or a point
connection between systems at which all but one of the degrees of freedom are
constrained. In the second major section of the paper the formulations for the sga
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478 J B Manuing

parameters are expanded to deal with excitations and connections that include
multiple degrees of freedom and may be extended over a line or area. The emphasis
is on a practical approach toward computing coupling loss factors.

2. SEA paraigeters

In swa the equations of motion describing a dynamic system are cast in terms of
power and energy variables (Lyon 1975). Power balance equations are developed by
requiring the overall time-average power input to a system to be equal to the sum
of the time-average power dissipated within the system due to damping and the net
time-average power transmitted to other systems. The power balance equations are
appealing because of their simplicity. The difficulties arise in calculating the
parameters that govern the power input and the power transmitted. In the following
sections these parameters will be formulated using a general mobility formulation.

(@) Power input

The power inputs to the sEA subsystems provide the basic forcing functions for the
power balance equations. In some cases the power input to a system can be measured
or determined empirically. However, because of the difficulty in obtaining a direct
measurement of power, a calculation of power input using mobility functions — and
their inverse, impedance functions — is often required. The mobility functions can be
predicted analytically and in many cases measured mobility functions can be used to
improve the confidence in the sea model. It may also be possible to compute the
power input to a dynamic system using a finite element model. The finite element
prediction of the power input can then be combined with an sEA model of the
structure and acoustic spaces to provide a composite model that combines the
advantages of the finite element and the statistical energy analysis methods.

In the following section the time-average power input to mechanical and acoustic
systems will be formulated for general point, line, and area excitation sources. First,
however, we introduce the basic concepts of mobility analysis. For this introduction
we assume that the force and velocity of the system can be represented by single
variables, ¥ and V.

The mobility function for a mechanical system is the ratio of the complex
amplitude of the response velocity to the complex amplitude of the force acting on
the system, where harmonic "’ time-dependence is assumed. In general, the
mobility function depends on frequency. The real part of the mobility is the
conductance, which is always positive. The imaginary part of the mobility is the
susceptance, which can be negative or positive. A change in the sign convention for
the complex time dependence, e.g. from exp* to exp /!, changes the sign of the
imaginary part of the mobility but not the real part.

The power input to a system is the product of force and velocity. The time-average
power input can be expressed in terms of the complex amplitudes of the force and
velocity as

Wit = LRe(F*V), (1)

where W™ is the time-average power input, Re signifies the ‘real part of’, V is the
velocity amplitude, and F* is the complex conjugate of the force amplitude. If the
amplitude of the force acting on the structure is known, the power input can be
expressed in terms of the magnitude-squared of the force amplitude and the real part
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of the mechanical mobility ; the conductance, (. The mean-square force acting on the
structure, (F®), is equal to one-half the magnitude-squared of the force amplitude so
that the power input can be written in terms of the conductance as

Wit = (F2) 6. 2)

The formulation of the power input in terms of the forces acting on the system and
the conductance is generally useful when the forces are known or can be measured.
In other cases the excitation force is not known. However, the excitation can be
defined by an imposed velocity. In this case the power input can be expressed in
terms of the mean-square velocity, (V?), and the real part of the mechanical
impedance, which is generally referred to a the resistance, R,

Wit = (V2 R. (3)

In the most general case, an interaction exists between the excitation and the
structure so that neither the excitation force nor an imposed velocity can be directly
specified. In this case an equivalent mechanical ‘circuit’ can be set up to model the
excitation (Shearer 1971). The concepts of a Thevenin-equivalent and a Norton-
equivalent circuit are borrowed from electrical engineering. The Thevinen equivalent
circuit can be used to represent a general source of excitation in terms of a source
impedance and its ‘ blocked-force’; the force applied to the structure if it were rigidly
constrained from moving. The Norton equivalent circuit can be used to represent the
same excitation source in terms of a source impedance and its ‘free-velocity’; the
velocity of the source when it is detached from the structure.

By using the Thevinen or blocked-force representation of the excitation, the power
input to the structure can be written in terms of the mean-square blocked-force as

wir = <Flz)> R/|ZS+Z|25 (4a)

where (F%)» is the mean-square blocked force, Z is the source impedance of the
excitation, and Z is the impedance of the excited structure. The power input from the
same excitation source can also be written using the Norton or free-velocity
representation in terms of the mean-square free-velocity as,

Wit =<V G/IY+ Y], (40)

where (V) is the mean-square free velocity and Y is the source mobility (inverse of
impedance). As the power input determined from (4a, b) must be equal we find that
the mean-square blocked force and free velocity are related by the magnitude
squared of the source impedance,

CER Ve = 144" (4¢)

This relation can be used as a means to determine the source impedance from
measured data or to relate the blocked force and the free velocity in formulations of
power input.

The general mobility formulation can be extended to the case where an excitation
is applied to the junction of several systems. For this case a junction impedance is
defined. Because the systems connected at a structural junction share a common
velocity at the junction the junction impedance is the sum of the source impedance
plus the impedances of all systems connected to the junction,

Zine = Zs"‘ZZw (Ha)

Phil. Trans. R. Soc. Lond. A (1994)
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480 J. K. Manning

where the summation is over all systems connected at the junction. The power input
to one of the connected subsystems can be written in terms of the mean-square
blocked force and the junction impedance as

Wi = KF) B/ Z %, (50)

where WM is the power input to the receiving system r and R, is the resistance of
system r. The formulation in terms of free velocity and system mobilities is more
complex since the mobility of a structural junction is not the sum of the mobilities
of the connected systems.

(b) Random excitation

When the excitation force is a random function of time, the power input in a band
of frequencies can be found by integrating the product of the spectral density of the
force and the conductance over the band, Aw,

Win = J dw Sp(w) F(w), (6a)
Aw

where o is the radian frequency, W™ is the power input in the frequency band, Aw,
and Sp(w) is the power spectral density of the excitation force. For many cases of
practical interest the spectral density of the force can be assumed to be fairly
constant over the frequency band Aw. Then the power input can be rewritten in
terms of the average conductance and the mean-square force within the band,

Win = (B2 (G, (60)

where ( »,, signifies an average over the frequency band Aw. The process of
averaging over the frequency bandwidth can be easily extended to a velocity source
by using a frequency-averaged mechanical resistance in (3).

The use of a frequency-average impedance or mobility function to evaluate the
power input for the general excitation represented by a blocked force or a free
velocity and a source impedance is not immediately clear. As in the earlier derivation
for the force and velocity sources, we should average the input power given by (4) or
(5) over a band of frequencies. Although formally correct this averaging process
brings about no immediate simplification. It is common in most seA formulations to
use average impedance or average mobilities to evaluate the power input using (4) or

(6),
=y o =y D
7+ 5P I+
where () signifies an average over the frequency band. The validity of using an
average impedance or mobility to determine the power input is a key question in
assessing the accuracy of many sEa parameter formulations. As we will see in a later
section the same question arises when computing the coupling loss factors, because
an impedance or mobility formulation of the power transmission is generally used.
At very high frequencies, where the average spacing between resonance frequencies
is small compared with the response bandwidth of the individual resonances, the
mechanical impedance functions will be fairly smooth functions of frequency. In this
case the two results given above will be the same, so that using the average
impedance or mobility to evaluate the power input is valid.
The use of an average impedance or mobility is also valid if the excitation source
impedance is either much greater than or much smaller than the mechanical

(7)
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impedance of the structure. In such cases the source can be modelled either as a
velocity or force source and the power input can be evaluated using the average
resistance or conductance.

At lower frequencies and for very lightly damped structures, the impedance
functions can vary significantly over a band of frequency. At these frequencies the
use of the average impedance or mobility to evaluate the power input may result in
a biased estimate. Further work in this area is warranted.

(¢) Statistical estimates of the mobility functions

The use of a frequency-average conductance for a random excitation is a common
example where a statistical estimate of a mobility function is used to determine the
power input. However, a broader application of the average conductance can be
made which is applicable both to random and deterministic single frequency
excitations.

In sEa, the structure is described statistically so that the resonance frequencies
and mode shapes become random variables. In this case we can define an ensemble
of structures and use ensemble averages and other statistical measures to define the
structural parameters. Thus, the power input for a force source averaged over the
ensemble can be written in terms of an ensemble average conductance,

WD ens = KF2) LG(0) D ens (8)

where (G(®))4,s 1 the ensemble-average conductance at the single frequency, w.

The concept of an ensemble of structures may be difficult to accept for many
engineers. [t can imply poor manufacturing tolerances and poor quality so that the
actual dimensions of the structure vary significantly for the different members of the
ensemble. This need not be the case, particularly at frequencies above the first few
system resonance frequencies. An ensemble can be formed from identical structures
with small changes in operating conditions, temperature, and other variables that
cause a seemingly random variation of resonance frequencies and mode shapes. Also
during the preliminary design of a product, an ensemble of systems can be formed
with variations to account for design uncertainties. As the design matures these
uncertainties can be removed and the prediction uncertainties can be removed.

The definition of an ensemble of structures can also be applied when the excitation
force is random. In this case the assumption that the force spectral density can be
constant over the frequency band need not be made and the ensemble-average
conductance can be used to relate the spectral densities of the power input and the
force on a narrow-band basis,

<SW(w)>ens = SF(w) <G(w)>ens> (9)

where S, (w) is the spectral density of the power input; formally, the real part of the
cross-spectrum of the force and velocity.

The frequency or ensemble average mobility of a system can be formulated in
terms of the modes of the system. Following a classical modal analysis the response
of the system can be expressed as a sum of the responses of the individual modes,

V)= 3 Vo2, (10)

where V, is the complex amplitude of the response of the nth mode and i, (x) is the
mode shape of the nth mode. The response amplitude, V,,, can be found as the product

Phil. Trans. R. Soc. Lond. A (1994)
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482 J. B. Manning

of the force acting on the mode and the mobility for a single degree-of-freedom
system. For a point force acting on the system at point x the modal force amplitude
is the product of the applied force amplitude and the value of the mode shape at the
application point of the force. The mobility function for a single mode of the system
represented by a mass/spring oscillator can be written in terms of the mass, the
resonance frequency, and the damping loss factor,

1 oo, 1, +jo(w, —0*)

Y () =
) = 5 (0 — " (g 0 )2

(11a)

where M, is the mass, w,, is the resonance frequency of the system, #,, is the damping
loss factor (viscous damping has been assumed although inclusion of both viscous
and solid type damping loss factors is possible). The point mobility of the system can
be found as a summation of the response velocities at point x from each of the modes,

Y(w,w) = T, (2) Y, (0), (11b)

where Y(x, w) is the point mobility of the system at point x and frequency w and Y, ()
is the mobility function for the nth mode.

An average mobility over frequency or over an ensemble of systems can be found
as the average of the individual terms of the summation,

J(x,w)) = Z (@) Y, (), (12a)

where { ) represents an average. The average of the product can usually be expressed
as the product of the averages. If a frequency average is being formed the mode
shapes can be assumed to be frequency independent. If an ensemble average is being
formed the mode shapes and the mode mobility function can be assumed to be
statistically independent. In either case we can write the average mobility as

Y, w)y = S ). (120)

To evaluate the average we consider first the mobility functions for the individual
modes, Y, (w).

For a lightly damped mode, the real part of the mobility shows a large peak at the
resonance frequency. The imaginary part shows both a positive and negative peak
near the resonance frequency. In evaluating the average mobility we consider first
the conductance, the real part of Y. If we integrate the conductance of a single mode
over a band of frequencies to determine the frequency-average, we can consider two
distinct cases. When the resonance frequency is within the band, the integrated
conductance will be large. In this case it is possible to extend the limits of integration
to zero and infinity without significantly adding to the value of the integral. The
resulting integral is simply /2. Thus, when the frequency band encompasses the
resonance frequency of the mode, the frequency-average conductance for the mode
is

1 =

<(’n>Am = —&;m’;? (13)

where Aw is the averaging bandwidth. We find that the average conductance does
not depend on resonance frequency except to the extent that we require the

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

/,//’ \\
/

A
i P 9

P
4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"/\\
A Y

A

i \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Mobility functions 483

frequency to be in the band. This leads to the idea that we do not need to know the
exact resonance frequencies of a system, but only the number of modes with
resonances in the band and the system mass. In addition, the average conductance
does not depend on damping except to the extent that we require the damping to be
small (damping loss factors less than 0.3 are sufficiently small that (13) gives a good
estimate of the average conductance in the band). When the resonance frequency is
outside the averaging band, the average conductance of the mode will be small and
its contribution to the summation can generally be ignored.

The imaginary part of the mobility shows both a large positive and a large
negative peak for the lightly damped system. At the resonance frequency the
imaginary part of the mobility is zero. If we integrate over a frequency band
containing the resonance frequency so that both the positive and negative peaks are
included, the contribution to the two peaks tends to cancel so that the frequency-
average of the imaginary part of the mobility tends to zero.

A frequency average mobility for the system is found by integrating the
conductance of each mode over the bandwidth Aw and summing over all modes. If
we limit our attention to the conductance of lightly damped systems, we need
consider only those modes with resonance frequencies in the band. For those modes
we can extend the limits of integration to zero and infinity in evaluating the integral.
The frequency-average point conductance can then be written as a simple summation
over modes with resonance frequencies in the band

1 n 2(w
@ =305 2 .
e M

(14)

where Aw is the averaging bandwidth and the summation is over all modes with
resonance frequencies in the band.

Further simplification of the point conductance is possible, although not always
justified. Simplification of the power input can result from averaging the conductance
over an ensemble of systems. If the ensemble is defined so that the point at which the
excitation is applied is a random variable the value of the mode shape squared can
be replaced by an average value. For a homogeneous system this average value is
simply the ratio of the modal mass divided by the physical mass of the system. The
summation is then simply the number of modes with resonance frequencies in the
band, Aw,

(G(x)ens = TN/2M Aw, (15)

where N is the mode count; the number of modes with resonance frequencies in the
band. The ratio of the mode count to the bandwidth is the modal density for the
system. Thus, we obtain the commonly used expression for the average conductance
(Cremer 1988),

CG(x)) ens = Tn(w)/2M, (16)

where n(w) is the modal density-average number of modes per unit radian frequency
and M is the physical mass of the system.

The idea of a ensemble of systems with a randomly varying point of excitation is
often hard to justify. However, we can also define an ensemble of systems with
randomly varying boundary conditions. Because the mode shapes are strongly
dependent on boundary conditions, we can achieve the same result for the ensemble
average of the mode shape squared.

Phil. Trans. R. Soc. Lond. A (1994)
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The relation between the average conductance and the modal density is a key
relation in sEA parameter derivatives. However, the assumptions used to derive the
simple result in (16) from the more general result in (14) limit the usefulness of the
simple result to homogeneous subsystems. Because all dynamic systems are
inherently non-homogeneous, it is best to start with the general result in (14) and
then determine if further simplification is possible. For example, if the sSEA analysis
is restricted to high frequencies and large frequency-averaging bandwidths, the
excited sEA subsystems can be made sufficiently small that they can be modelled by
homogeneous subsystems and (16) can be used. On the other hand, at low
frequencies, or for narrow frequency bandwidths, small subsystems may have no
modes. In this case it is necessary to increase the size of the excited subsystem and
the more general result of (16) may be required.

(d) Coupling loss factor
In sEA the coupling loss factor relates the power transmitted between two
connected subsystems to their energies

WS = oy, Bg— o, B, (17)

where W3 is the time-average power transmitted from subsystem s to subsystem
r, 9., is the coupling loss factor between subsystem s and subsystem r, and £ is
the total energy of subsystem s. The coupling loss factors are not reciprocal so that
775;1' # 77r;s'

To formulate the coupling loss factor using mobility functions we use the power
input relations derived in §2b together with a relation between the energy of the
system and the blocked force or free velocity. If the two systems s and r are
disconnected at the junction the resulting velocities of these systems can be
considered to be the free velocities in formulating the power transferred between the
two systems. In sea the free velocities of system s and system r are assumed to be
uncorrelated. With this assumption the net power transmitted between the systems
can now be expressed using the power input formulation in terms of free velocities,

Y

trans _
Ws;r < ts>lY+Y|2

Mo wve (18a)

1Y+ Y 2
where (Vi) is the mean-square free velocity of system s and (VZ)>? is the mean-
square free velocity of system r. Similarly, the power transmitted between the two
systems can be written in terms of the mean-square blocked forces,

J/trans N2 R N2 RS

Ws;r - <ﬁbs> |/ +7 Ig ﬁbr>M> (18b)
where (F'}.> is the mean-square blocked force of system s and {F2,.) is the mean-
square blocked force of system r.

To determine the coupling loss factors it is necessary to simplify (18) by averaging
over frequency or over an ensemble of systems. As discussed in §26, it is common in
most sEA formulations to use average mobility or impedance functions in (18) to
evaluate the transmitted power. :

The frequency-average or ensemble-average mean-square free velocities of the two
systems are assumed to be proportional to the mean-square kinetic energies of the
systems. Because the mean-square kinetic and potential energies of a system are

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

\

\

%A

I

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A
JA
) ¥

A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

Mobnility functions 485

equal for resonant vibration, we can also assume the mean-square free velocities to
be proportional to the total energies of the systems,

Vo =8y/M; and (Vi) = E,/M,, (19)

where M and M, are the masses of the two systems.

The process of disconnecting the two systems changes the response of the systems
and the distribution of energy. We assume, however, that the relation between the
mean-square free velocities and the system energies continues to be valid. With these
assumptions the coupling loss factor can be written as

| G | GO
.= S d .= s
i = OB Yy + (T M s T ML Y+ (Y

where { > indicates that an average mobility function is being used. A symmetric
coupling factor can be defined as the product,

¢s;r = (0775;,.77/((1))5, (21)

where ¢, ., is the coupling factor and n(w) is the modal density as a function of radian
frequency. The coupling factor can be expressed in terms of the average mobility
functions as

(20)

UM KY)+KEOR

The ratio of the modal density to the system mass is proportional to the average
conductance of the system. Thus, the coupling factor can be written as

4. = 1 KG)H <G
S 2n Y+ (DR

(22)

(230a)

A similar derivation using the blocked force instead of the free velocity results in an
impedance function formulation for the coupling factor

_ L HKRBH B

s;r 7 > 23b
P " B (e 250

where {(Z;,.» is the frequency-average or ensemble-average junction impedance; the
sum of the average impedance of all systems connected to the junction.

The coupling factor given by (23a, b) can be used for one-, two- and three-
dimensional systems coupled at a point with a single junction degree of freedom. For
the special case of two one-dimensional systems, the mobility ratio in (23a) can be
replaced by a power transmission coefficient ; the ratio of the power transmitted to
the receiving system to the power incident from the source system. Although
coupling loss factors are often derived from power transmission coefficients, the
mobility or impedance formulations given by (23a, b) are more general.

3. Extended interactions
(@) Point source

The excitation can be modelled by a point source if its extent is small compared
with the wavelengths of vibration in the excited system. The most common example
of a point source is a mechanical shaker used to excite a structure at a point.

Phil. Trans. R. Soc. Lond. A (1994)
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For the general case of a point excitation of a structural system we must consider
all six degrees of freedom; three translational or force degrees of freedom and three
rotational or moment degrees of freedom. Because of the orthogonality of the force
and moment components in the three axes, the power input can be written as

Wy =35ReZXFF Y, F, (24a)
i
where the subscripts ¢ and j range from 1 to 6 for the six degrees of freedom, F is a
force or moment amplitude, Y;.; is the ¢,j term of the mobility matrix, and F* is the
complex conjugate of the force amplitude F;. The terms of the mobility matrix are
the velocity, V;, divided by the force amplitude, Fj, where V; and F; refer to one of the
translational and/or rotational degrees of freedom.

From the principle of reciprocity the mobility matrix is symmetric. With this
condition the power input can be written in terms of the conductance matrix,

I/V1n=%22F*Gz]ﬁ;> (24b)
where the imaginary terms cancel.

The cross-terms needed to evaluate the power input can be neglected in an
ensemble-average, because both the cross-terms of the excitation and the cross-terms
of the conductance matrix can be assumed to average to zero or to a sufficiently small
value that they can be neglected. Although some error may be incurred it is generally
acceptable in an engineering application to neglect the contribution of the cross-
terms so that the power input for the general point force excitation can be written
as a simple sum over the six degrees-of-freedom,

> = ZFH LG, (25)

where (F'}) is the mean-square force (or moment) for the ith degree-of-freedom and
(@,) is the average of the ith diagonal term of the conductance matrix.

(b) Line source
The formulation of power input can be extended to a force excitation distributed

over a line by expanding the force into a series of orthogonal functions, usually a
complex Fourier series,

F(w) = S F (k) e 7%, (26)

where F(k;) is the Fourier amplitude for the component of the force at the
wavenumber, k;. The velocity is also expanded into a Fourier series, so that the
intensity at point x (input power per unit length) can be determined from a double
summation over Fourier amplitudes,

Ln(w) = 3 Re DX F (k) * V(k) e * k2, (27)

i
where /;,(x) is the power intensity at point 2. The input power is found by integrating
over the length of the excitation. Because of the orthogonality of the Fourier

functions, the cross-terms drop out so that the power input can be written in terms
of a single summation over the Fourier amplitudes,

Wi = MRS F(k,)* V(k,), (28)
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where L is the length of the distributed force excitation. The Fourier amplitude of the
response velocity, V(k,), can be expressed as the matrix product of a mobility matrix
and the Fourier amplitudes of the applied force. Because of reciprocity the mobility
matrix relating the complex Fourier amplitudes of the response velocity and the
excitation force must be symmetric. Then the complex mobility matrix can be
replaced by the conductance matrix, which is real. The power input can now be
written as
Win = 3L DX F (ky)* Gy, ky) F (k). (29)
i
where the imaginary parts of the matrix terms cancel. A term of the conductance
matrix, G'(k;,k;), is the ratio of the complex Fourier amplitude of the response
velocity at wavenumber k; to the complex Fourier amplitude of the excitation force
at wavenumber k;.
The terms of the conductance matrix can be formulated in terms of the modes of
the system as,
1z k; k;)*
(Gl )b, = 5o s Pl Pl (300

n n

where the summation is over all modes with resonance frequencies in the band Aw
and the Fourier transform of the mode shape is defined as

Bty = [ s (30b)
0

In forming an ensemble average of the power input the cross terms of the
conductance matrix can be neglected, because they can be assumed to average to
zero. Thus the average power input from the line excitation can be written as

(Wi = LELF (k,)*) <G (k) (29)

where (F(k;)?) is the mean-square value of the Fourier component at k; and {G(k;))
is the average of a diagonal term of the conductance matrix.

(c) Area source

The power input from a pressure field associated with an acoustic source or a
turbulent boundary layer is determined by a similar approach to that used of the
line-distributed excitation. The area-distributed pressure field is expanded into
Fourier amplitudes in two dimensions,

F(x,?/) = E ZF(kmv kzy) e—jkixxe_jkiyy’ (31)
tx 1Y
where F(k;,, k;,) is the Fourier amplitude for the component of the force at the
wavenumber defined by the components, k;, and k;,. The velocity is also expanded
into its Fourier amplitudes and following the approach used for the line-distributed
excitation the power input is found to be,

I/Vin = %A Z E E E F(kww kzy)* G(km’ kzy ) ij’ kyy) F(ka’ kjy)’ (32)
iy jz jy
where the imaginary parts of the matrix terms cancel. The conductance matrix,
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488 J. K. Manning
G(kyy, iy s Ky, k) is the real part of the ratio of the complex Fourier amplitude of the
response velocity at the wavenumber defined by the components k;, and k;, to the
complex amplitude of the excitation force at the wavenumber defined by the
components k;, and k;,. As for the case of a line excitation the cross terms can be
neglected in an ensemble average of the power input so that

ix iy

where {F(k;,, k;,)*> is the mean-square value of the Fourier component at k;, and k;,
and {G(k;,, k;,)> is the average of a diagonal term of the conductance matrix.

4, Conclusions

The use of power and energy variables to describe the dynamic response of
structural-acoustic systems is a key concept of sEa. In this paper the power input to
a subsystem and the power transmitted between connected systems have been
formulated using mobility functions. This in itself does not represent an advance to
sEA theory. In fact, nearly all published derivations of sEA parameters are based, at
least implicitly, on a mobility formulation. Because of the complexity of the general
mobility formulation for most structural-acoustic problems few exact solutions for
SEA parameters exist. The difficulty comes in identifying the approximations that are
made and their appropriateness to the problems being considered. In this paper we
have shown that a generalized and simplified formulation of the power input and
coupling loss factor can be achieved by averaging either over frequency or over an
ensemble of systems. The averaging process results in two general simplifications.
First, it is usually possible to ignore the cross-terms in the mobility formulations.
Second, it is possible to relate the conductance to the modal density and the mass of
the system. A formal proof of the validity of these simplifications is not always
possible. However, by making these simplifications in computing the SEA parameters
complex dynamic problems that are otherwise intractable can be analysed using sEa.
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